A Novel Phenolic Compound, Chloroxynil, Improves Agrobacterium-Mediated Transient Transformation in Lotus japonicus

نویسندگان

  • Mitsuhiro Kimura
  • Sean Cutler
  • Sachiko Isobe
  • Luis Herrera-Estrella
چکیده

Agrobacterium-mediated transformation is a commonly used method for plant genetic engineering. However, the limitations of Agrobacterium host-plant interactions and the complexity of plant tissue culture often make the production of transgenic plants difficult. Transformation efficiency in many legume species, including soybean and the common bean, has been reported to be quite low. To improve the transformation procedure in legumes, we screened for chemicals that increase the transformation efficiency of Lotus japonicus, a model legume species. A Chemical library was screened and chemicals that increase in transient transformation efficiency of L. japonicus accession, Miyakojima MG-20 were identified. The transient transformation efficiency was quantified by reporter activity in which an intron-containing reporter gene produces the GUS protein only when the T-DNA is expressed in the plant nuclei. We identified a phenolic compound, chloroxynil, which increased the genetic transformation of L. japonicus by Agrobacterium tumefaciens strain EHA105. Characterization of the mode of chloroxynil action indicated that it enhanced Agrobacterium-mediated transformation through the activation of the Agrobacterium vir gene expression, similar to acetosyringone, a phenolic compound known to improve Agrobacterium-mediated transformation efficiency. Transient transformation efficiency of L. japonicus with 5 μM chloroxynil was 60- and 6- fold higher than that of the control and acetosyringone treatment, respectively. In addition, transgenic L. japonicus lines were successfully generated by 5 μM chloroxynil treatment.Furthermore, we show that chloroxynil improves L. japonicus transformation by Agrobacterium strain GV3101 and rice transformation. Our results demonstrate that chloroxynil significantly improves Agrobacterium tumefaciens-mediated transformation efficiency of various agriculturally important crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A bacterial artificial chromosome library of Lotus japonicus constructed in an Agrobacterium tumefaciens-transformable vector.

We constructed a BAC library of the model legume Lotus japonicus with a 6-to 7-fold genome coverage. We used vector PCLD04541, which allows direct plant transformation by BACs. The average insert size is 94 kb. Clones were stable in Escherichia coli and Agrobacterium tumefaciens.

متن کامل

Efficient Inactivation of Symbiotic Nitrogen Fixation Related Genes in Lotus japonicus Using CRISPR-Cas9

The targeted genome editing technique, CRISPR/Cas9 system, has been widely used to modify genes of interest in a predictable and precise manner. In this study, we describe the CRISPR/Cas9-mediated efficient editing of representative SNF (symbiotic nitrogen fixation) related genes in the model legume Lotus japonicus via Agrobacterium-mediated stable or hairy root transformation. We first predict...

متن کامل

Development of Transgenic Tall Fescue Plants from Mature Seed-derived Callus via Agrobacterium-mediated Transformation

We have achieved efficient transformation system for forage-type tall fescue plants by Agrobacterium tumefaciens. Mature seed-derived embryogenic calli were infected and co-cultivated with each of three A. tumefaciens strains, all of which harbored a standard binary vector pIG121Hm encoding the neomycin phosphotransferase II (NPTII), hygromycin phosphotransferase (HPT) and intron-containing β-g...

متن کامل

Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium.

Inducible virulence (vir) genes of the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid are under control of a two-component regulatory system. In response to environmental factors (phenolic compounds, sugars, pH) VirA protein phosphorylates VirG, which in turn interacts with the promoters of other vir genes, causing induction. A mutation of virG, virGN54D (which codes for a Asn-54-->Asp a...

متن کامل

Providing a mathematical model for measuring the expression of GUS gene was transferred temporarily through xylem vessels using RT-PCR and probe Gold nanoparticles

Gene transfer to plants and the production of transgenic plants with various purposes, such as improving the performance and quality, resistance to pests, diseases, etc., and of great importance are carried out Gene transfer to plants performs to evaluate the transient and permanent gene expression. Transient expression is quick, easy and simple and is not influenced by position effect compare ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015